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Abstract: CMOS  analog  and  mixed-signal  phase-locked  loops  (PLL)  are  widely  used  in  varies  of  the  system-on-chips  (SoC)  as
the  clock  generator  or  frequency  synthesizer.  This  paper  presents  an  overview  of  the  AMS-PLL,  including:  1)  a  brief  introduc-
tion of the basics of the charge-pump based PLL, which is the most widely used AMS-PLL architecture due to its simplicity and
robustness;  2)  a  summary  of  the  design  issues  of  the  basic  CPPLL  architecture;  3)  a  systematic  introduction  of  the  techniques
for the performance enhancement of the CPPLL; 4) a brief overview of ultra-low-jitter AMS-PLL architectures which can achieve
lower jitter (< 100 fs) with lower power consumption compared with the CPPLL, including the injection-locked PLL (ILPLL), sub-
sampling  (SSPLL)  and  sampling  PLL  (SPLL);  5)  a  discussion  about  the  consideration  of  the  AMS-PLL  architecture  selection,
which could help designers meet their performance requirements.
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1.  Introduction

CMOS  phase-locked  loops  (PLL)  are  widely  used  in  most
of  the system-on-chips  (SoC)  as  the clock  generator  for  digit-
al circuits and wireline transceivers, or the frequency synthes-
izer  for  the  wireless  transceivers.  Recently,  with  the  continu-
ous  scaling  of  the  CMOS  technology,  the  all-digital  PLL  (AD-
PLL)  becomes  popular  mainly  because  of  the  advantages  of
the  scalability  in  advanced CMOS technology and the  design
portability  across  technologies[1].  However,  compared  to  the
widely used analog and mixed-signal PLL (AMS-PLL)[2], the AD-
PLL  usually  suffers  from  the  issues  of  higher  jitter  due  to  the
quantization  noise  and  higher  sensitivity  to  power  supply
noise[2].  This  makes  the  AMS-PLL  still  be  a  desirable  choice
even at the 10-nm technology node and beyond[2].

In  this  paper,  an  overview  of  the  AMS-PLL  is  presented.
The  rest  of  this  paper  is  organized  as  follows.  Section  2
presents  a  brief  introduction  of  the  basics  and  the  design  is-
sues of the CPPLL, which is the most widely used AMS-PLL ar-
chitecture  due  to  its  simplicity  and  robustness.  Section  3
presents  a  systematic  introduction  of  the  techniques  for  the
performance enhancement of  the CPPLL.  Section 4 briefly  in-
troduces  the  ultra-low-jitter  AMS-PLL  architectures,  including
the  injection-locked  PLL  (ILPLL),  sub-sampling  PLL  (SSPLL)
and  sampling  PLL  (SPLL),  which  can  generate  the  clock  with
sub-100-fs  jitter  and  lower  power  consumption  compared
with  the  CPPLL  to  meet  the  strict  jitter  requirement  of  some
applications such as the local oscillation (LO) generator for mil-
limeter-wave (mm-wave) 5G communication. Section 5 shows
the discussion about the consideration of  the AMS-PLL archi-
tecture  selection,  which could help designers  meet  their  per-

formance requirements. Section 6 concludes this work.

2.  Basics and design issues of the CPPLL

2.1.  Basics

Fig.  1(a) shows the block diagram of  the basic  CPPLL[3, 4].
It  consists  of  a  tri-state  phase/frequency  detector  (PFD),  a
charge pump, a low-pass filter (LPF), a voltage-controlled oscil-
lator (VCO) and a divide-by-N frequency divider (div_N). The ra-
tio  between  the  VCO  output  frequency  (fVCO)  and  the  refer-
ence  frequency  (fREF)  is N.  The  delta–sigma  modulator  (DSM)
is used to modulate the division ration of the divider so as to
obtain  a  fractional  division  ratio  to  achieve  the  function  of
the fractional-N PLL[3].  For the integer-N PLL, of which N is an
integer number, the DSM is not required.

The operation principle  of  the CPPLL is  presented by the
timing diagram shown in Fig. 1(c). The division ratio shown in
Fig.  1(c) is  2  as  an  example. ФIN shown  in Fig.  1(c) is  the  in-
put phase error between the reference clock (REF) and the di-
vider feedback clock (DIV).  When the PLL is unlocked and ФIN

is positive, ФIN is detected by the PFD and CP generates a pos-
itive current pulse ICP to charge the LPF so as to increase fVCO

to reduce ФIN.  If ФIN is  negative,  CP generates a negative cur-
rent pulse ICP to discharge the LPF so as to decrease fVCO to re-
duce  |ФIN|.  At  the  locking  state, ФIN keeps  zero  so  that  the
VCO tuning voltage VC (see Fig. 1(a)) keeps stable. As a result,
fVCO = N fREF (N shown in Fig. 1(c) is 2).

As  indicated  in Fig.  1(c),  the  pulse  width  of ICP equals  to
|ФIN|.  Hence, the average CP output current is proportional to
the ФIN,  as  the  PFD/CP  transfer  curve  shown  in Fig.  1(b).  As
we  can  see,  the  gain  of  PFD/CP, KPFD,  is ICP/(2π).  Unlike  the
PLLs  with  other  types  of  the  phase  detector  (PD)  such  the
XOR gate and mixer, which suffer from the issue of limited fre-
quency lock range due to the limited monotonic ФIN range of
these  PDs[5],  the  lock  range  of  the  PFD-based  PLL  is  unlim-
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ited  because  the  linear ФIN range  of  the  tri-state  PFD  is  from
–2π to  2π (see Fig.  1(b)),  and  the  PFD  output  polarity  keeps
positive  or  negative  when ФIN >  2π (fREF > fVCO/N)  or ФIN <
–2π (fREF < fVCO/N),  respectively.  This  makes  the  PFD  be  able
to  distinguish  the  polarity  of  the  frequency  difference
between fREF and  (fVCO/N)  so  that  an  additional  frequency-
locked loop with a separated frequency detector for initial fre-
quency acquisition is not required. Hence, the CPPLL architec-
ture  is  simple  and  robust,  and  thus,  the  CPPLL  becomes  the
most widely used AMS-PLL architecture.

Fig. 2 shows linear phase domain model of the CPPLL[5, 6].

The  noise  transfer  functions  (NTF)  of  all  the  building  blocks,
and the expressions of loop bandwidth and phase margin are
illustrated  in Fig.  2 according  to  the  analysis  presented  in
Refs. [5, 6].

2.2.  Design issues

As introduced in Section 2.1, the CPPLL is a simple and ro-
bust  PLL architecture.  However,  it  suffers  from several  design
issues,  which  limit  the  CPPLL  performances.  In  this  subsec-
tion,  six  main  design  issues  of  the  CPPLL  are  briefly  intro-
duced and discussed as follows.
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Fig. 1. (a). Block diagram of the basic CPPLL. (b) Transfer curve of PFD and CP. (c) Timing diagram.
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Fig. 2. Linear phase noise model, CPPLL loop dynamics, and noise transfer functions of each building blocks.

2 Journal of Semiconductors    doi: 10.1088/1674-4926/41/11/111402

 

 
Z Zhang: CMOS analog and mixed-signal phase-locked loops: An overview

 



First,  as shown in Fig.  3(a),  at  the locking state of  the CP-
PLL,  the  CP  current  mismatch  causes  a  voltage  ripple  on  the
VCO  tuning  voltage  (see VC in Fig.  1(a)).  Such  voltage  ripple
causes  a  periodic  frequency  disturbance,  and  thus,  induces
spurious  tones  (reference  spur)  at  the  offset  frequency  of
±fREF in the PLL output spectrum (see Fig. 3(b)) or determinist-
ic jitter (DJ) in the PLL output clock eye (see Fig. 3(c)).  For the
wireless  transceiver,  the spurious tones around LO induce re-
ciprocal  mixing  in  a  wireless  transceiver.  This  causes  emis-
sion mask violation on the transmitter side and degraded sig-
nal-to-noise  ratio  (SNR)  on  the  receiver  side[7].  For  the  high-
speed wireline transceiver, the DJ degrades the eye quality of
the transmitted data at  the transmitter  side,  and thus,  causes
degradation of the bit error rate (BER) at the receiver side[7]. A
narrow  loop  bandwidth ωBW with  small  poles  (ωp1 and ωp2)
can  be  selected  to  suppress  the  reference  spur  but  comes
with the penalty of longer PLL locking time and less suppres-
sion  of  VCO  phase  noise  because  the  characteristic  of  the
VCO NTF is high-pass, as indicated in Fig. 2.

Second, as the phase margin formula illustrated in Fig.  2,
the zero ωZ should be adequately smaller than the loop band-
width ωBW.  This necessitates a large integral  capacitor C1 (see
Fig.  1(a)),  which  occupies  large  area,  especially  in  the  case  of
small loop bandwidth. C1 can be reduced with the same loop
bandwidth  by  choosing  a  large  R1 and  small  CP  output  cur-
rent ICP,  as  indicated  by  the  loop  bandwidth  formula  shown
in Fig.  2.  However,  this  raises  the  level  of  the  phase  noise  in-
duced by the CP and LPF,  as  indicated by the NTFs  shown in
Fig. 2.

Third,  as  discussed  above,  a  large ICP is  required  to  sup-
press  the in-band phase noise so as  to reduce the integrated
jitter  of  the  PLL  output  clock.  But  this  comes  with  the  pen-
alty of large power consumption.

Fourth,  in the fractional-N PLL,  a small  loop bandwidth is
required  to  suppress  the  quantization  noise  (Q-noise)  in-
duced  by  the  DSM,  as  indicated  in Fig.  4.  This  also  slows
down  the  PLL  settling  process  and  degrades  the  VCO  phase
noise suppression.

Fifth,  in the fractional-N PLL,  since the range of the input
phase  error  is  usually  more  than  one  VCO  period  at  locking
state  because  the  division  ratio  of  the  divider  is  modulated
by  the  DSM,  the  nonlinearity  of  the  PFD/CP  I/O  characterist-
ics,  which  are  induced  by  the  CP  current  mismatch  and  the
PFD  non-ideality,  degrade  the  in-band  phase  noise  due  to
the  DSM  quantization  noise  folding[8−13],  as  illustrated  in
Fig.  5.  Furthermore,  such  nonlinearity  also  degrades  the  frac-
tional  spur  level[9−13],  which  is  at  the  offset  frequency  of
NFracfREF (NFrac is  the  fractional  part  of  the  division  ratio)  and
its  harmonics  (see Fig.  5).  The fractional  spur  is  difficult  to  be
suppressed by the LPF if the spur frequency is lower than the
loop bandwidth (in-band fractional spur).

Last, if a long divider chain is required to obtain a large di-
vision  ratio,  the  divider  noise  may  significantly  degrade  the
PLL  in-band  phase  noise.  Furthermore,  in  the  fractional-N
PLL,  since the division ratio is  modulated by the DSM, the di-
vider  delay  as  well  as  the  transition  edge  of  the  divider  out-
put  is  also  modulated  by  the  DSM.  This  further  degrades  the
PLL in-band phase noise[3].

3.  Techniques for CPPLL performance
enhancement

This section gives a systematic introduction of  the CPPLL
performance  enhancement  techniques  which  were  pro-
posed  to  mitigate  the  CPPLL  design  issues  presented  in  Sec-
tion  2.2,  including (1)  reference  spur  suppression techniques,
(2) area reduction technique, (3) in-band phase noise suppres-
sion  technique,  (4)  power  reduction  technique,  (5)  fast  set-
tling techniques, (6) CP linearization techniques, and (7) quant-
ization noise reduction techniques.

3.1.  Reference spur suppression technique

As  discussed  in  Section  2,  to  reduce  the  reference  spur
level,  it  is  essential  to  reduce  the  CP  current  mismatch.  This
can  be  achieved  by  adopting  the  CP  with  current  mismatch
suppression techniques[14−27] or the CP current mismatch calib-
ration techniques[28−31].

Fig.  6(a) shows  the  CP  using  an  op  amp  to  suppression
the  current  mismatch,  which  was  firstly  proposed  in  Ref.  [14]
and is now widely used in the CPPLLs[15−20].  The key idea is to
using  an  op  amp  based  negative  feedback  loop  to  keep  the
drain  voltage VR (see Fig.  6(a))  almost  equals  to  the  CP  out-
put  voltage VOUT so  as  to  make  the  source–drain  voltages  of
M1  and  M2  equal  to  those  of  M3  and  M4,  respectively.  This
makes IUP and IDN approximately  equal  to AIreplica (A and
Ireplica are shown in Fig. 6(a)) so that the current mismatch can
be  effectively  suppressed.  However,  nodes  N  and  P  share
charge  with  the  LPF  (node VOUT)  at  the  off-state.  This  is  the
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charge sharing effect[21],  which causes long switch-off time of
the  CP[22].  To  alleviate  this  issue,  Ref.  [22]  proposed  a  modi-
fied version shown in Fig.  6(b).  Two additional  switches MSWP

and  MSWN are  added  to  remove  the  charge  shored  on  the
nodes P and N respectively so as to mitigate the charge shar-
ing  effect.  However,  as  analyzed  in  Ref.  [23],  it  suffers  from
the  issue  of  reversed  sub-threshold  leakage  at  the  off-state
(see Irp and Irn in Fig. 6(b)), especially if the circuit is implemen-
ted  in  nanometer  CMOS  technology  and VOUT is  near  supply
or  ground.  Although this  issue can be avoided by combining
the  current  mismatch  suppression  technique  with  the  cur-
rent-steering  CP  circuit[24−27] (see Fig.  6(c)),  which  is  also
widely  used  due  to  its  fast  switching  speed,  it  is  power
hungry.  To  solve  this  problem,  Ref.  [32]  reported  a  source-
switched  CP  with  reverse  leakage  compensation  technique,
as  shown in Fig.  6(d),  which  combines  the  advantages  of  the
CPs  shown  in Figs.  6(b) and 6(c).  The  op  amp  in  this  CP  is
used  not  only  to  suppress  the  current  mismatch  but  also  to
compensate  the  reverse  leakage  by  keeping Vsdn and Vsdp

(see Fig. 6(d)) to be zero at off-state.
Besides  the  current  mismatch  suppression  techniques  of

CP, the current mismatch calibration techniques[28−31] are also
wide  used  to  reduce  the  current  mismatch.  The  conceptual
block  diagram  of  the  PLL  with  the  current  mismatch  calibra-
tion technique is shown in Fig. 7. Compared with the basic CP-
PLL,  an  auxiliary  phase  detector  is  added  to  detect  the  input
phase error  for  the calibration logic  to adjust  the IUP or IDN of

the CP accordingly so as to make the input static phase error
close to zero at locking state (this means IUP ≈ IDN). The lock de-
tector is used to judge if the PLL is locked or not. The CP calib-
ration  logic  is  enabled  only  when  the  PLL  is  locked,  which  is
controlled  by  a  lock  detector  (LD).  Using  the  current  mis-
match calibration technique, the CP design challenges can be
mitigated.  But  it  requires  additional  calibration  time,  which
causes longer PLL settling process.

The  spur  level  can  also  be  reduced  by  using  the
switched-capacitor  based  loop  filter  (SC-LPF)[3, 33−35] or  com-
bine  the  SC-LPF  with  the  widely  used  RC-LPF. Fig.  8 shows
two examples. Using the SC-LPF, the ripple due to the CP cur-
rent  mismatch  can  be  blocked  by  the  switches  so  as  to  re-
duce the spur level without the penalty of settling time.

The  fully-differential  PLL  architecture[19, 36−39] can  reduce
the  spur  level  induced  by  the  PFD  mismatch  and  common-
mode interference induced by the supply and ground, as the
simplified block diagram shown in Fig. 9(a). The fully-differen-
tial tuned VCO and fully-differential CP are used in such PLL.

If  the  frequency  of  the  spur  is  boosted  with  the  same
LPF,  the  spur  level  can  be  reduced.  Hence,  Refs.  [40, 41]  pro-
posed  to  boost  the  spur  frequency  by  boosting  the  fre-
quency of  the CP turns-on pulse with an fSPUR booster,  as  the
conceptual block diagram shown in Fig. 9(b).

3.2.  Area reduction techniques

As  discussed  before  in  Section  2.2,  the  integral  capacitor
of  the  basic  CPPLL  (see  C1 in Fig.  1(a))  usually  occupies  large
area,  especially  in  the  case  of  large ICP or  a  small  loop  band-
width. Hence, the key point for the CPPLL area reduction is to
shrink the area of the integral capacitor.

The  first  technique  is  the  capacitance  multiplication
technique.  Ref.  [5]  shows  several  active  capacitance  multipli-
ers  using  the  op  amp  to  boost  the  equivalent  capacitance.
Fig. 10(a) shows two examples, which are used in Refs. [42, 43].
The main design challenge of these capacitance multipliers is
that  the op amp requires  low noise and large output voltage
range simultaneously.  This  usually  results  in  high power  con-
sumption.
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A  more  effective  way  is  to  split  the  single  loop  path  of
the  basic  CPPLL  (see Fig.  1(a))  into  a  proportional  path  (P-
Path)  and an integral  path  (I-Path),  as  the  dual-path  loop CP-
PLL[44−46] shown  in Fig.  10(b).  By  setting  a  small ICP_I (ICP_I < <
ICP_P,  see Fig.  10(b)),  the  capacitance  of  the  integral  capacitor
C1 can  be  reduced  without  changing  the  loop  dynamics[45],
and  no  additional  op  amp  is  required.  Furthermore,  the  loop
parameters  are  more  flexible  to  be  designed  since  the  loop
bandwidth  selection  is  decoupled  from  the  capacitance  of
the  integral  capacitor  C1

[45].  To  further  reduce  area,  the  ana-
log integral path shown in Fig. 10(b) can be replaced by a digit-
al  integral  path,  as  the  hybrid  digital  PLL[47−51] shown  in
Fig. 10(c). The integral path consists of a bang-bang phase de-
tector[47−50] or a time-to-digital converter (TDC)[51] and a digit-
al  accumulator.  By setting the gain of  the accumulator (see α
in Fig.  10(c))  sufficiently  small,  the  quantization  noise  in-
duced by the integral path can be negligible, and the loop dy-
namics  is  still  dominated  by  the  analog  proportional  path.
Hence,  such architecture can combine the advantages of  low
noise of the CPPLL and small area of the ADPLL.

If  a very compact area is required, the time-based PLL ar-
chitecture[52, 53] can be adopted,  as  shown in Fig.  10(d).  Since
only two ring oscillators (RO) are used as the time-domain in-
tegrator,  the  area  can  be  very  tiny,  even  compared  with  the
area of the hybrid digital PLL. However, the additional noise in-
duced  by  the  two  ROs  worsens  the  PLL  jitter,  and  any  mis-
match between the two ROs significantly  degrades  the refer-
ence spur[53].

3.3.  In-band phase noise reduction techniques

The main source of the in-band phase noise is the CP cur-
rent  noise.  Besides  the  straightforward  way  of  increasing ICP,
as  mentioned  before,  the  pulse  width  of  dead-zone  mitiga-
tion  pulse  (see ton in Fig.  1)  is  also  required to  be  minimized,
as  indicated  by  the  NTF  of  PFD/CP  illustrated  in Fig.  2.  To
achieve this, the true single-phase clocking (TSPC) PFD are de-
sirable due to its simple logic and short delay path[54]. In addi-
tion, the source degeneration technique can also be used to re-
duce  the  current  noises  of  current  sources  in  the  CP[55, 56],
and the ratio between the CP bias current and the CP output
cannot be too small.

To further reduce the CP-induced in-band phase noise, in-
creasing the phase detector  (PD)  gain is  required.  Due to the
advantage  of  the  equivalent  high  PD  gain  at  low  input  jitter,
the  BBPD,  which  is  popular  for  ADPLL  design,  has  also  been
proposed for the CPPLL to suppress the CP noise[57]. But it suf-
fers  from  the  issue  of  poor  gain  control  of  the  BBPD.  Due  to
the absence of  the CP in the type-I  PLL proposed in Ref.  [58],
low  in-band  phase  noise  is  achieved.  But  the  PD  gain  of  the
PLL reported in Ref. [58] varies with the VCO tuning voltage[58].

As  discussed  in  Section  2.2,  the  divider  noise  also  de-
grades the PLL in-band phase noise.  To mitigate the effect of
divider noise,  a  retiming D-flip-flop is  usually  used to remove
the jitter accumulation of the divider[59], as shown in Fig. 11(a).
Hence, the output noise of the divider only contains the retim-
ing DFF noise,  and thus,  the divider noise is  significantly sup-
pressed. However, in the case of long divider chain, the delay
of the divider varies much with process, voltage and temperat-
ure (PVT) variation. This may cause metastability issue of the re-
timing DFF.  To solve this problem, a digital-to-time converter
(DTC) and calibration logic circuits (see Fig. 11(d)) are used to
control  the delay of  the DTC automatically  so as  to avoid the
metastability issue[60].

3.4.  Power reduction techniques

As discussed in Section 3.2, increasing the CP output cur-
rent  as  well  as  the  CP  bias  current  can  reduce  the  CP-in-
duced  noise.  This  increases  CP  power  consumption.  To  re-
duce  CP  dc  power  without  in-band  phase  degradation,  the
gated  CP[61] can  be  used,  in  which  the  replica  bias  branch  is
turned-off when the CP is at the off-state, as shown in Fig. 12(a).
To achieve gating operation while maintain adequate CP cur-
rent  matching  performance,  an  improved  gated  CP  reported
by Ref. [62] can be used, as shown in Fig. 12(b).

The  prescaler  of  the  divider  chain  is  usually  power
hungry,  especially  in  the  case  of  high  VCO  frequency.  Hence,
several  low-power  prescaler  circuits  can  be  used,  including
the  injection-locked  frequency  divider[63−66] and  dynamic
latch  based  divider[67−69].  For  the  multi-modulus  divider
(MMD), which is required to generate multiple division ratios,
the TSPC logic[70] instead of the current-mode logic (CML) are
recommended  if fT of  the  process  is  high  enough  to  achieve
the required operation speed. The retiming DFF is also power
hungry if  the VCO frequency is  high.  So,  it  can operate at the
frequency  of  the  prescaler  output  instead  of  the  VCO  fre-
quency to save power[37],  as  shown in Fig.  12(c).  But  the low-
noise  prescaler  is  required[66] because  its  noise  is  not  re-
moved by the retiming DFF.

In some case,  if  the divider operation frequency is  not so
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high that it can operate at lower supply voltage, the current-re-
use  technique[71, 72] can  be  used  to  reduce  power  by  stack-
ing the VCO with the high-frequency prescaler  and the MMD
between the supply and ground, as shown in Fig. 12(d).

To  extremely  save  power  consumption  for  the  low-
power  applications  such  as  the  internet-of-thing  (IoT),  the
low-voltage PLL[17, 46, 62, 73−80] (supply voltage ≤ 0.7 V) with sev-
eral low-voltage circuit design techniques can be adopted.

3.5.  Fast settling techniques

Usually, in a wideband PLL, the VCO is designed with a di-
gitally-controlled capacitor array (DCCA). So, the VCO can cov-
er  several  frequency  bands  to  achieve  a  wide  frequency
range and a  low VCO tuning gain,  which is  required to lower
down  the  VCO  phase  noise  caused  by  the  amplitude-to-
phase  (AM-PM)  noise  conversion[81] and  the  LPF-induced
phase noise (see the NTF of the LPF in Fig. 2).  Thus, the auto-
frequency control (AFC) techniques are required to automatic-
ally  find  the  frequency  band  whose  central  frequency  is
nearest  to  the  target  frequency.  After  AFC searching process,
the  PLL  enters  the  fine  locking process  to  achieve  phase  and
frequency  locking.  Hence,  the  PLL  fast  settling  technique  in-
cludes  two  parts:  the  fast  AFC  techniques  and  fast  fine  lock-
ing techniques.

Fig.  13 presents  six  AFC  techniques[82−91].  The  first  one  is

the Vtune monitoring  technique  based  AFC[82, 83],  as  shown  in
Fig.  13(a).  Using  this  technique,  the  PLL  loop  keeps  closed,
and  the  DCCA  optimal  code  is  selected  when  the  VCO  tun-
ing  voltage Vtune is  finally  settled  between  two  predeter-
mined  voltages  (see VH and VL in Fig.  13(a)).  If Vtune is  higher
than VH or lower than VL, the AFC controller (see Fig. 13(a)) ad-
justs  the  DCCA  code  accordingly  and  finally  the  AFC  control-
ler finds the optimal DCCA code. Due to the feature of closed
loop,  using  this  technique  takes  long  settling  time  for  the
AFC process.

The second AFC technique is the relative period comparis-
on technique[84, 85],  as illustrated in Fig. 13(b). This is an open-
loop  based  AFC  technique.  The  difference  between  the  peri-
od of divided VCO and that of the reference clock is first con-
verted  to  a  voltage  difference  ΔV (see Fig.  13(b))  by  a  time-
to-voltage  converter  (TVC),  and  then  the  comparator  gets
the  polarity  of  ΔV to  decide  if  the  VCO  frequency  is  fast  or
slow so as to adjust the DCCA code accordingly. According to
Ref. [84], this technique can achieve a very short AFC time (sev-
eral μs  or  even  sub-μs).  But  this  work  is  not  suitable  for  frac-
tional-N PLL because its divider output period is not fixed but
modulated by the DSM.

The  third  technique  is  the  counter-based  AFC[86],  as
shown  in Fig.  13(c).  This  is  also  an  open-loop  AFC.  The  di-
vided  VCO  frequency  is  counted  by  a  counter  first,  and  then,
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the  error  between  the  counted  VCO  frequency fcont (see
Fig.  13(c))  and the target frequency code ftarget is  detected so
as  to  adjust  the  DCCA  code  accordingly.  Since  the  slow
closed-loop  settling  process  of  the  closed-loop  AFC  (see
Fig.  13(a))  is  avoided,  and  the  VCO  frequency  can  be  estim-
ated by  the  counter  regardless  of  the  integer-N or  fractional-
N mode, the counter-based AFC technique is widely used.

If  the  VCO  frequency  is  not  so  high,  the  AFC  speed  can
be  improved  by  directly  counting  the  VCO  output[87−89],  as
shown in Fig.  13(d).  This  is  because the required time for  the
VCO  frequency  counting  can  be  reduced  by  directly  count-
ing  the  VCO  output  without  the  penalty  of  counting  resolu-
tion, compared to the counter-based AFC shown in Fig. 13(c).

To  further  improve  the  AFC  speed,  the  four-phase  clock,
which is generated by a CML divided-by-2 divider (DIV2) con-
nected  to  the  VCO  output,  can  be  used  for  VCO  frequency
counting[90],  as  shown in Fig.  13(e).  Since the interval  of  each
adjacent  phase  of  the  4-phase  clock  from  the  CML  DIV2  is
half  of  the  VCO  period,  the  counting  resolution  can  be
doubled  with  the  same  counting  time  compared  with  the
AFC  shown  in Fig.  13(d).  In  other  words,  the  counting  time
can  be  halved  with  the  same  counting  resolution  to  reduce
the  counting  time  of  the  AFC  process.  Furthermore,  an  AFC
clock  controller[90] can  be  used  to  double  clock  frequency  of
the AFC controller (used for frequency comparison and DCCA
code  searching)  to  further  improve  the  AFC  speed.  The  set-
tling  time  of  the  AFC  process  reported  in  Ref.  [90]  is  1.25–
1.86 μs  with  the  reference  frequency  range  from  15  to  50
MHz.

The  last  AFC  technique  is  the  TDC-assisted  AFC  tech-
nique[91],  as  shown  in Fig.  13(f).  A  TDC  is  used  to  get  a  finer
counting resolution than that shown in Figs. 13(c)–13(e) so as
to achieve a very short AFC time (1.25 μs in Ref. [91]) by short-
ening  the  counting  time.  This  technique  is  suitable  for  the
PLL design with old process (the design in Ref. [91] was imple-
mented  in  180-nm  CMOS)  because  a  short  AFC  time  can  be
achieved  without  directly  counting  the  high-frequency  VCO
output.

After AFC process, the fine frequency locking process is re-
quired  to  make  the  PLL  lock  to  the  target  frequency  accur-
ately. Hence, the fast fine locking techniques is necessary to ac-
celerate such process. There are mainly three fine locking tech-
niques, including the dynamic loop bandwidth switching tech-
nique[92, 93], frequency presetting technique[94−96], and dynam-
ic phase error compensation (DPEC) technique[97].

Fig.  14(a) shows  the  CPPLL  with  dynamic  loop  band-
width switching technique. A lock detector (LD) is used to de-
tect  the  locking  state  of  the  PLL.  If  PLL  is  not  locked,  a  large

loop  bandwidth  is  selected  for  fast  locking  by  adjusting  the
CP  current  or  the  resistance  of  R1 using  the  loop  bandwidth
controller. If the locking state is detected by the LD, a narrow-
er  loop  bandwidth,  which  makes  the  PLL  achieve  its  optimal
phase noise performance[93], is selected.

However,  the  locking  time  may  still  not  be  fast  enough
with the dynamic  loop bandwidth switching technique if  the
frequency difference between the initial frequency of the PLL
after  AFC process and the target  frequency is  not  adequately
small. To further speed up the fine frequency locking process,
the frequency presetting technique can be used, as shown in
Fig.  14(b).  Initially,  when  start  up,  by  sweeping  the  tuning
voltage (VC)  and the DCCA code of VCO, the VCO frequencies
at  different VC and  DCCA  control  codes  can  be  obtained  and
recorded  by  the  look-up  table.  Hence, VC can  be  preset
nearest  to  the  target  frequency  according  to  the  look-up  ta-
ble  to  reduce  the  difference  between  the  initial  frequency
and the target frequency so as to reduce the settling time.

However,  even  with  the  technique  of  loop  bandwidth
switching  or  frequency  presetting,  the  PLL  may  still  take  a
long  time  to  remove  the  overshoot  of  the  input  phase  error
(see ΔФIN in Fig. 14(c)) during the PLL settling process[97].  This
is called phase settling process. To further reduce the PLL set-
tling  time,  the  value  of  the  phase  error  overshoot  needs  to
be  reduced  to  shorten  the  phase  settling  process.  Based  on
this  concept,  the  dynamic  phase  error  compensation  (DPEC)
technique was proposed in Ref.  [97],  as shown in Fig.  14(c).  A
discriminator-aided  phase  detector  (DAPD)  is  used  to  detect
ΔФIN so  as  to  adjust  the  division-ratio  of  the  divider  accord-
ingly  to  compensate  ΔФIN.  Thus,  a  small  ΔФIN is  kept  during
the  PLL  settling  process  so  that  a  shorter  phase  locking  time
is  achieved.  Since ΔФIN is  kept  small,  an auxiliary  CP (Aux CP)
is used to speed up the frequency acquisition process[97]. As a
result,  both  frequency  acquisition  and  phase  settling  process
are  accelerated  simultaneously  to  reduce  the  PLL  locking
time.

3.6.  CP linearization techniques

As  discussed  in  Section  2.  2,  the  nonlinearity  of  PFD/CP
I/O  characteristics,  which  are  induced  by  the  CP  current  mis-
match  and  the  PFD  non-ideality,  degrade  the  in-band  phase
noise  and  fractional  spur  level.  Although  the  techniques  for
CP  current  mismatch  suppression  (see  Section  3.1)  can  im-
prove the linearity of CP, the nonlinearity induced by the PFD
non-ideality  still  exists.  Hence,  to  further  improve  the  linear-
ity  of  PFD/CP,  the most  widely  used method for  the CPPLL is
to  induce  an  offset  phase  (ΔФoff)  in  the  transfer  curve  of  the
PFD/CP,  as  shown  in Fig.  15(a).  ΔФoff should  be  larger  than
half  of  the  range  of  the  input  offset  phase  error  at  the  lock-
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ing  state  so  as  to  avoid  the  nonlinear  region  of  the  PFD/CP
transfer curve.

To  realize  this  idea,  the  widely  used  method  is  to  add
a  gated-offset  current[9, 11] branch  in  the  CP,  as  shown  in
Fig.  15(b).  By  adding  a  small  gated  offset  current Ioffset (see
Fig.  15(b)),  the linearized transfer  curve of  the PFD/CP shown
in Fig. 15(a) can be achieved. The issue of adding an offset cur-
rent  is  that  an  additional  voltage  ripple  is  induced  on  the
VCO  tuning  voltage VC,  which  degrades  the  spur  level.  To
avoid  such  voltage  ripple,  the  sampling  loop  filter  (as  intro-
duced in Fig. 8(b)) can be used[98, 99], as shown in Fig. 15(c).

Besides the CP offset current technique, one can also intro-
duce  an  offset  delay  into  the  PFD  to  avoid  the  nonlinear  re-
gion  of  the  PFD/CP  I/O  characteristics[100, 101],  as  an  example
(reported in Ref. [100]) shown in Fig. 15(d).

In  summary,  all  these  CP  linearization  techniques  intro-
duced in this sub-section require wider pulse width of CP out-
put  current  pulse  to  avoid the nonlinear  region on the trans-
fer  curve  of  the  PFD/CP.  This  increases  the  in-band  phase
noise  induced  by  the  CP,  as  discussed  in  Section  3.3.  Hence,
to  mitigate  this  issue,  the  input  phase  error  range  at  the  PLL
locking state should be reduced so as to reduce the required
ΔФoff (see Fig.  15)  and  the  pulse  width  of  CP  output  current
pulse.  This  is  also  necessary  to  reduce  the  DSM  quantization
noise,  and  can  be  achieved  by  reducing  the  division  ratio
step (see Δ in Fig.  2),  as  the details  presented later  in Section
3.7.

3.7.  Quantization noise suppression techniques

In this sub-section, an overview of the quantization noise
suppression  techniques  is  presented.  The  existed  quantiza-
tion  noise  suppression  techniques  can  be  categorized  into
eight types: 1) sub-integer-N divider technique; 2) phase-inter-
polator (PI) based compensation technique; 3) DTC-based com-
pensation technique; 4) phase-domain quantization noise filter-
ing  technique;  5)  reference  frequency  multiplication  tech-
nique;  6)  current-mode  digital-to-analog  converter  (DAC)
based compensation technique; 7) finite-impulse-response-em-
bedded  (FIR-embedded)  noise  filtering  technique;  8)  space-
time averaging technique.

As  indicated by the quantization noise  formula  shown in

Fig.  2,  reducing the quantization step (division ratio step,  see
Δ in Fig. 2) can effectively lower down the quantization noise.
For  example,  if  the  quantization  step  is  reduced  from  1  to
(1/M), the quantization noise is reduced by 20log(M) dB. In ad-
dition,  as  discussed  in  Section  3.6,  reducing Δ is  also  favor-
able to reduce the CP-induced in-band phase noise when ad-
opting  the  CP  linearization  techniques  (see  Section  3.6).
Hence,  to  realize  this  idea,  the  sub-integer-N frequency  di-
vider[56, 80, 91] can be used, as shown in Fig. 16(a). Since the divi-
sion  ratio  step  is  reduced  from  1  to  0.5,  the  quantization
noise  is  reduced  by  6  dB.  To  further  reduce  the  quantization
noise,  the  M-phase  phase-interpolator  (PI)[102−104],  which  can
adjust  its  output  phase with a  step of  (2π/M),  can be used to
reduce Δ by M times  so  as  to  reduce  the  quantization  noise
by 20log(M) dB, as shown in Fig. 16(b). To further reduce Δ to
a  very  fine  value,  one  can  replace  the  PI  with  a  DTC[57] (see
Fig.  16(c)),  which  usually  achieves  the  resolution  of  sub-1  ps.
Since  the  DTC  gain  and  dynamic  range  varies  with  PVT  vari-
ation,  a  background  calibration  block  is  required  to  adapt-
ively  control  the  DTC  gain.  This  is  achieved  by  the  least-
mean-square  (LMS)  algorithm,  as  presented  in  Ref.  [57].  The
main issue of the PI or DTC is the nonlinearity, which also de-
teriorates  the  in-band  phase  noise  and  fractional  spur,  like
the PFD/CP nonlinearity. Hence, the PI and DTC should be care-
fully  designed  to  reduce  the  nonlinearity  as  much  as  pos-
sible.

Since  the  characteristic  of  the  quantization-noise-in-
duced phase noise at the divider output is high-pass, one can
directly  use  an  additional  PLL[105−106] as  the  phase-domain
low-pass  filter  to  suppress  the  quantization  noise,  as  shown
in Fig.  16(d).  However,  this  approach  suffers  from  the  follow-
ing  issues.  First,  since  the  additional  PLL  is  inside  the  main
PLL  loop,  the  loop bandwidth of  the  main  PLL  should  be  ad-
equately smaller  than the additional  PLL.  This  limits  the main
PLL loop bandwidth,  and thus,  may cause limited VCO phase
noise  suppression.  Second,  the  additional  PLL  introduces
more noise sources and higher power consumption.

The quantization noise formula shown in Fig. 2 also indic-
ates  that  increasing  the  operation  frequency  of  DSM  can
push  more  quantization  noise  to  higher  offset  frequency  so
that  the  quantization  noise  can  be  filtered  out  by  the  PLL
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loop more readily. Since the DSM operation frequency equals
to the reference frequency at the locking state of the PLL, a ref-
erence frequency multiplier can be used, as shown in Fig. 16(e).
The  reference  frequency  multiplier  can  be  a  XOR-gate-based
frequency doubler[98, 99], a frequency quadrupler[107], or a mul-
tiplying  delay-locked  loop  (MDLL)[108, 109].  A  higher  reference
frequency  benefits  quantization  noise  suppression  but  with
the  penalty  of  higher  power  consumption  of  the  DSM,  refer-
ence frequency multiplier and PFD.

The  quantization  noise  can  also  be  cancelled  by  the  cur-
rent-mode  digital-to-analog  converter  (DAC)[8, 11, 110−115],
which  generates  a  current  pulse  with  opposite  current  direc-
tion of  the CP output current  pulse induced by the quantiza-
tion  noise.  Suppose  the  charges  of  the  DAC  output  and  the
CP  output  induced  by  the  quantization  noise  are QDAC and
QCP,  respectively.  In  order  to  effectively  cancel  the  quantiza-
tion  noise,  the  sum  of QDAC and QCP should  be  approxim-
ately  zero  (QDAC + QCP ≈  0).  Hence,  the  gain  of  the  DAC
should  be  carefully  controlled  to  meet  this  condition.  This
can  be  done  by  properly  selecting  the  current  ratio  between
the  DAC  and  CP  output  current.  To  avoid  any  mismatch  of
the  ratio  between  the  DAC  and  CP  output  current,  the  LMS-
based calibration method can also be used to adaptively con-
trol the gain of the DAC[110−112]. Similar to the PI and DTC, the
DAC also suffers from the issue of nonlinearity. Hence, the dy-
namic  element  matching  (DEM)  technique  is  required  to  im-
prove the DAC linearity[114].

The  embedded  finite-impulse-response  (FIR)  noise  filter-
ing  technique[102, 116−119] can  filter  out  more  high-frequency
quantization noise  without  an additional  PLL inside the main
PLL  loop  or  an  additional  reference  frequency  multiplier,  as
shown  in Fig.  16(g).  In  the  PLL  with  such  technique,  multiple
dividers, PFDs and CPs are adopted. The instantaneous phase

error due to the quantization noise generated in each fraction-
al  divider  is  transferred  to  individual  PFD-CP  path,  and  all  of
the CP outputs are averaged at the loop filter act as the sum-
ming  unit  in  FIR  filtering[102].  Compared  with  the  DAC-based
technique  and  the  PI-based  as  well  as  DTC-based  technique,
this  approach  does  not  require  additional  linear  analog  cir-
cuit  block like DAC, PI  or  DTC.  Hence,  the circuit  linearity and
matching  performance  requirements  are  relaxed.  However,
FIR  filtering  cannot  filter  the  quantization  noise  at  low  offset
frequency, and multiple dividers are power-hungry.

To  mitigate  the  issues  of  the  embedded  FIR  noise  filter-
ing  technique  mentioned  before,  the  space-time  averaging
technique is  proposed[120],  as the simplified schematic shown
in Fig.  16(h).  Spatial  averaging  is  achieved  by  using  an  array
of  dividers  running  in  parallel  with  differential  division  ratio
to  obtain  an  instantaneous  fractional  division  ratio.  For  ex-
ample, if M dividers are used, and at least one of the divider’s
division  ratio  is N +  1  and  the  division-ratios  of  the  rest  di-
viders  is N,  the  division  ratio  can  varies  from N +  1/M to
N +  (M –  1)/M with  a  step  of  1/M.  To  achieve  finer  fractional
division  ratio,  the  DSM  is  also  used,  and  the  quantization
noise  is  reduced  by  20log(M).  This  is  similar  to  the  PI-based
technique  but  no  additional  circuit  nonlinearity  issue  exists.
Ref.  [120]  also  proposes  a  method  to  reduce  the  number  of
the  required  divider  to  one  by  using  a  phase  selector  with  a
controller.

4.  Ultra-low-jitter AMS-PLL architectures

As  presented  in  Section  3,  there  are  amount  of  circuit
design  techniques  to  mitigate  the  design  issues  of  the  basic
CPPLL  introduced  in  Section  2.  However,  since  the  CP-in-
duced in-band phase noise is multiplied by N2 at the PLL out-
put,  it  is  difficult  to further  reduce the integrated jitter  of  the
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Fig.  16.  Quantization noise suppression techniques:  (a)  sub-integer-N divider  technique,  (b)  phase-interpolator  (PI)  based compensation tech-
nique, (c) DTC-based compensation technique, (d) phase-domain quantization noise filtering technique, (e) reference frequency multiplication
technique,  (f)  current-mode  DAC  based  compensation  technique,  (g)  finite-impulse-response-embedded  (FIR-embedded)  noise  filtering  tech-
nique, and (h) space-time averaging technique.
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CPPLL to sub-100-fs with low power consumption, which is re-
quired  for  5G  mm-wave  communication[121].  Although  a  re-
cently  reported  CPPLL[122] achieves  sub-100-fs  clock  jitter
with  output  frequency  range  from  7.4  to  14  GHz,  it  con-
sumes large power with high reference frequency (500 MHz),
and an advanced process (16-nm FinFET is  used in Ref.  [122])
is required to achieve ultra-fast transition edge of divider and
PFD  so  as  to  reduce  the  in-band  phase  noise[122].  To  achieve
sub-100-fs  PLL  clock  jitter  using  a  cheaper  process  (e.  g.  65-
nm  or  40-nm  CMOS)  with  low  power  consumption,  other
AMS-PLL  architectures  are  proposed,  including  the  injection-
locked  PLL  (ILPLL)[123−147],  sub-sampling  PLL  (SSPLL)[148−183]

and  sampling  PLL  (SPLL)[184−192].  In  this  section,  a  brief  over-
view of these ultra-low-jitter AMS-PLL architectures is presen-
ted.

4.1.  Injection-locked PLL

Fig.  17(a) shows the block diagram of the basic ILPLL[123].
In  the  ILPLL,  both  the  in-band  phase  noise  and  the  output
band  phase  noise  are  suppressed  by  the  injecting  a  clean
pulse (see PULINJ in Fig. 17(a)) to the oscillator[123]. PULINJ is gen-
erated  by  a  pulse  generator  (PG).  So,  the  phase  noise  of  the
ILPLL  is  almost  dictated  by  the  reference  clock  phase  noise.
This  indicates  that  the  ILPLL  can multiply  the  input  clock  fre-
quency with almost no jitter degradation. Hence, the noise re-
quirement of  the building blocks in the ILPLL can be signific-
antly  relaxed.  As  a  result,  the  ILPLL  can  generate  an  output
clock  with  sub-100-fs  clock  jitter  and  low  power  consump-
tion[124, 133−136, 145].

Fig. 17(b) presents two widely used injection-locked oscil-
lator  (ILO),  including  the  ILO  with  direct  injection  technique
(DILO)  and  the  ILO  with  single-ended  injection  technique
(SILO)[124].  To  minimize  the  phase  noise  and  spur  of  the  ILO,
the  free  running  frequency  of  the  ILO  (fosc,  free)  should  equal
to  the N multiple  of  the  frequency  of  the  injection  pulse
(finj)[123].  The  timing  relationship  between  the  outputs  of
the  two  ILOs  and  the  injection  pulse  (PULINJ)  are  shown  in
Fig.  17(b) when fosc,  free equals  to Nfinj.  To  meet  the  timing
diagram  shown  in Fig.  17(b),  a  variable  delay  line  (VDL)  is
used  in  the  ILPLL  to  adjust  the  injection  timing,  as  shown  in

Fig.  17(a).  In  the  basic  ILPLL  reported  in  Ref.  [123],  the  delay
of  the  VDL  is  manually  controlled.  This  makes  the  ILPLL  per-
formances  sensitive  to  the  PVT  variation,  and  the  VDL  needs
to be readjusted if the ILPLL output frequency changes.

To avoid this drawback of the basic ILPLL, Refs. [125, 126]
proposed  the  injection  timing  calibration  method  to  adjust
the  VDL  automatically  before  the  injection  locking  is  per-
formed.  Hence,  the process variation can be overcome.  How-
ever, the foreground calibration method cannot track the vol-
tage and temperature variation. This also makes the ILPLL per-
formance  sensitive  to  environmental  variation.  To  make  the
ILPLL  more  robust,  the  adaptive  injection  timing  alignment
techniques  are  widely  used  for  the  ILPLL  design[127−147],  as
the  conceptual  block  diagram  of  the  ILPLL  with  such  tech-
niques shown in Fig. 17(d). The key building block for the ad-
aptive  injection  timing  alignment  technique  is  the  injection
timing alignment phase detector (PD), which makes the ILPLL
meet  the timing diagram shown in Fig.  17(b) when the ILPLL
is locked. Since the injection timing alignment PD keeps oper-
ate  when  the  ILPLL  is  locked,  the  injection  timing  can  be
aligned adaptively regardless of the PVT variation. An initial fre-
quency  acquisition block  is  used to  preset  the  oscillator  free-
running frequency fosc, free close to the target frequency (Nfinj).
The goal of the research on the adaptive injection timing align-
ment  technique  is  to  make  the  actual timing  of  the  ILPLL  as
close to  the idea timing shown in Fig.  17(b) as  possible  so as
to  reduce  the  spur  level  with  low  phase  noise  and  low  jitter.
Recently, a low spur level of –72 dBc was achieved with low jit-
ter of 140 fs using an injection-locked ring oscillator[142].

4.2.  Sub-sampling PLL

Fig.  18(a) shows  the  simplified  block  diagram  of  the  in-
teger-N SSPLL[148−169].  According  to  the  analysis  presented  in
Ref.  [148],  unlike the CPPLL,  the CP noise is  not multiplied by
N2 at  the  PLL  output.  This  is  the  main  reason  that  the  SSPLL
can achieve a very low in-band phase noise without large CP
current  so that  the SSPLL can generate a  clock with sub-100-
fs jitter and low power consumption[165−169].  Furthermore, the
rejection  of N2 amplification  of  the  in-band  phase  noise  in-
duced  by  the  CP  can  significantly  relax  the  CP  design  chal-
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Fig. 17. (Color online) ILPLL: (a) Block diagram of the basic ILPLL and the principle of the phase noise suppression of the ILPLL, (b) schematic of
DILO and SILO with their injection timing, (c) ILPLL with injection timing calibration, and (d) conceptual block diagram of the ILPLL with adaptive
injection timing alignment techniques.
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lenges[168].  Hence,  a  SSPLL  with  an  ultra-low  clock  jitter  of
56.4  fs  can  be  achieved  even  under  a  low  supply  voltage  of
0.65 V[167, 168].

As  shown  in Fig.  18(a),  the  SSPLL  consists  of  a  sub-
sampling  loop  (SSL)  and  a  frequency-locked  loop  (FLL).  The
SSL is the main loop and serves as the main function of the SS-
PLL.  In  the  SSL,  the  sub-sampling  PD  (SSPD)  and  the  sub-
sampling  CP  (SSCP)  instead  of  the  conventional  PFD  and  CP
are  adopted. Fig.  18(b) shows  the  timing  diagram  and  trans-
fer characteristics of the SSPD/SSCP[148]. The buffered VCO dif-
ferential  outputs  (VCOP and  VCON)  are  sampled  by  a  low  fre-
quency  reference  clock.  The  input  phase  error  |ФIN|  between
the reference clock (REF) and the buffered VCO output is trans-
ferred  to  a  voltage  difference VSAMP (see Fig.  18(b))  first,  and
then, the SSCP with transconductance of gm converts VSAMP in-
to a SSCP output current ICP (ICP = gmVSAMP) so as to charge or
discharge  the  LPF  to  control  the  VCO  frequency  and  phase.
As  shown  in Fig.  18(b),  at  the  phase  locking  state  of  SSL,
VSAMP keeps around zero so that ICP keeps around zero and VC

keeps constant.
As shown in Fig. 18(b),  the monotonic input range of the

SSPD is  only  ±0.5π VCO phase.  Thus,  the  SSPD cannot  distin-
guish  between Nfref and  other  harmonics  of fRef.  This  may
make  the  SSPLL  lock  to  the  wrong  frequency.  Hence,  a  FLL
(see Fig.  18(a)),  which  consists  of  a  feedback  frequency  di-
vider, a PFD with deadzone (DZ) and a conventional CP, is ad-
opted  to  achieve  initial  frequency  acquisition[148].  When  the
VCO  frequency  is  close  to  the  target  frequency,  the  input
phase  error  between  the  reference  clock  (REF)  and  the  di-
vider  feedback  clock  (DIV) ФIN_FLL is  small  enough  so  that  it
can  fall  within  the  DZ  to  disable  the  CP  in  the  FLL.  Thus,  the
SSL  can  lock  to  the  target  frequency  without  the  interfer-
ence of  the FLL[148].  If  the SSL loses lock due to some sudden
interference,  the  variations  of  VCO  frequency  and  phase
make ФIN_FLL fall out of the DZ so that the FLL is enabled auto-
matically  to  relock  the  VCO  frequency.  The  isolation  buffer
(ISOBUF,  see Fig.  18(a))  is  used  to  mitigate  the  interference
from  the  SSPD  to  the  VCO  due  to  the  sampling  operation  so

as to reduce the SSPLL spur level[149].
The concept of the SSPLL can also be adopted for the frac-

tional-N PLL by using a DTC to modulate the frequency of ref-
erence clock[172−179],  as shown in Fig. 18(c). Similar to the DTC
used  in  the  CPPLL  for  quantization  noise  reduction  (see  sec-
tion  3.7),  the  DTC  used  in  the  fractional-N SSPLL  also  re-
quires  background  calibration  using  a  LMS  block  to  avoid
large  fractional  spur[172].  By  replacing  the  CP  and  analog  LPF
with an analog-to-digital converter (ADC) and a digital loop fil-
ter  (DLF),  the  digital  SSPLL[165, 169, 180−183] can  be  achieved,  as
shown  in Fig.  18(d),  which  can  avoid  the  non-ideality  of  the
CP and analog LPF such as the leakage. The main design chal-
lenge  of  the  digital  SSPLL  is  ADC  design,  which  requires  ad-
equate  high  resolution  to  make  the  quantization-induced  in-
band  phase  noise  be  very  low  and  low  power  consumption
to  maintain  the  key  advantages  of  low-jitter  and  low  power
of the SSPLL.

4.3.  Sampling PLL

Fig.  19(a) shows  the  simplified  diagram  of  the  integer-N
sampling PLL (SPLL)[184−188]. Compared with the SSPLL, the dif-
ference between the SPLL and SSPLL is  that the frequency of
the  sampled  clock  is  equal  to  the  reference  frequency  at  the
locking state  of  the  VCO.  Hence,  the  monotonic  range of  the
sampling  PD  (SPD)  is  enlarged  to  ±0.5TREF (TREF is  the  refer-
ence  period).  Thus,  the  SPLL  is  more  preferred  during  the
phase/frequency acquisition[190] and more robust over large ex-
ternal  disturbance[184] compared  to  the  SSPLL.  The  SPD  gain
is  controlled by adjusting the slope of  the sampled transition
edge  of  the  input  reference  clock Vramp (see Fig.  19(a))[184].
A  high  SPD  gain  can  be  achieved  with  a  high  slope  of Vramp

to achieve lower in-band phase noise than the CPPLL without
large CP current.  Hence, the SPLL can also achieve sub-100-fs
output  clock  jitter  with  low  power  consumption  compared
with  the  CPPLL[190, 191].  The  main  penalty  of  using  SPD  in-
stead of SSPD is that the divider noise is still  multiplied by N2

at the PLL output as the in-band phase noise. Hence, the retim-
ing  technique  introduced  in  Section  3.3  is  also  necessary  for
the  SPLL.  This  makes  the  SPLL  consumes  more  power  than
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Fig. 18. (Color online) SSPLL: (a) block diagram of the integer-N SSPLL, (b) timing diagram and the transfer characteristics of the SSPD/SSCP, (c) sim-
plified block diagram of the fractional-N SSPLL, and (d) simplified block diagram of the digital SSPLL.
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the  SSPLL,  especially  in  the  case  of  high  PLL  output  fre-
quency.

Fig.  19(b) shows  the  schematic  of  the  fractional-N
SPLL[189−192].  Since  the  frequency  divider  is  used  in  the  SPLL
main loop,  a  DSM is  also  adopted like  the  CPPLL to  generate
the fractional  division ratio.  Similar  to  the  CPPLL (see  Section
3.7),  the  DTC  is  also  used  to  compensate  the  quantization
noise  of  the  DSM,  and  a  LMS  block  is  used  to  calibrate  the
DTC gain.

5.  Discussion

Since  several  AMS-PLL  architectures  are  introduced  in
this  paper,  it  is  worthwhile  to  present  a  discussion about  the
consideration  of  the  AMS-PLL  architecture  selection  so  as  to
help designers meet their performance requirements.

Although  the  ILPLL,  SSPLL  and  SPLL  perform  better  than
the CPPLL mainly in terms of jitter and power, the CPPLL archi-
tecture is still recommended to be adopted for most of the ap-
plications  if  the  required  jitter  and  power  are  not  simultan-
eously  very  low.  The  reasons  are  as  follows.  First,  as  presen-
ted in Section 2, the monotonic range of the input phase differ-
ence  of  the  PFD  is  from  –2π  to  2π.  This  makes  the  CPPLL  be
more  robust  to  maintain  its  lock  state  over  any  disturbance,
compared  to  the  other  AMS-PLL  architectures.  Second,  the
CP  current  of  the  CPPLL  is  less  sensitive  to  the  PVT  variation
compared  to  the  PD  gains  of  the  SSPLL  and  SPLL.  Last,  the
main  drawback  of  the  ILPLL  is  the  poor  spur  level  and  lim-
ited  phase  noise  suppression  in  the  case  of  large  division  ra-
tio[123] or  high output frequency[139].  This  limits  the scope the
application of the ILPLL.

If  an ultra-low-jitter (e.  g < 100 fs) clock is required, there
are two different scenarios needs to be considered.

In  the  first  scenarios,  if  the  jitter  of  the  reference  clock  is
not  adequately  low,  the  CPPLL  is  still  more  preferable  com-

pared to the other AMS-PLL architectures introduced in this pa-
per.  The  reason  is  as  follows.  As  presented  in  Section  4,  the
main  advantage  of  the  ILPLL,  SSPLL  and  SPLL  is  the  low  in-
band phase noise. This is true only when the reference clock jit-
ter is adequately low because the NTFs of the reference clock
phase noise of all  the PLL architectures are low-pass.  Further-
more,  as  discussed  before,  the  CPPLL  is  more  robust.  Hence,
with a noisy reference clock, the CPPLL is more suitable and ro-
bust than the other AMS-PLL architectures to generate a low-
jitter  clock  by  setting  a  narrow  loop  bandwidth  and  design-
ing a low-phase-noise VCO.

In  the  second  scenario,  if  an  ultra-low-jitter  reference
clock is  available,  the ILPLL,  SSPLL and SPLL architectures  are
more  suitable  than  the  CPPLL  to  generate  an  ultra-low-jitter
clock  with  low  power  consumption.  If  a  small  multiplication
factor  is  required,  the  ILPLL  is  a  good  choice  because  both
the in-band and out-band phase noise  are  suppressed simul-
taneously  by  injection  locking  with  an  acceptable  spur  level.
This  significantly  relaxes  the  noise  requirement  of  each  PLL
building  blocks.  With  a  large  multiplication  factor,  the  SSPLL
and  SPLL  are  more  preferable  due  to  their  lower  spur  levels
than that of the ILPLL. If  the PLL output frequency is not very
high (e. g. <10 GHz), the SPLL is more suitable because of the
wider monotonic input range of SPD compared to that of the
SSPD. However, at a higher frequency (e. g. > 20 GHz), it is chal-
lenging  to  design  a  low-noise  and  low-power  divider  chain,
which is  necessary  for  an  ultra-low-jitter  SPLL.  Hence,  the  SS-
PLL  becomes  more  suitable  to  generate  an  ultra-low-jitter
clock at a higher frequency.

The  discussions  presented  above  are  summarized  in
Table 1.

6.  Conclusion

In this paper, an overview of the AMS-PLL is presented, in-

Table 1.   Summary of the features of the AMS-PLL architectures

Architecture Pros Cons Suitable application scenarios
CPPLL Simple and robust 1. CP-induced in-band phase noise is

multiplied by N2 (N is division ratio)
2. Divider noise contributes in-band phase
noise

1. Jitter and PLL power requirements are not
stringent
2. Generates low-jitter clock without ultra-
low jitter reference clock

ILPLL Both in-band and outband
phase noise are suppressed
simultaneously

Large spur induced at large division ratio N Generates ultra-low-jitter clock with small N
and ultra-low-jitter reference clock

SSPLL 1. Ultra-low in-band phase noise
2. No divider-induced phase
noise

Narrow PD monotonic input range Generates high frequency (e. g. > 20 GHz)
ultra-low-jitter clock with large N and ultra-
low-jitter reference clock

SPLL 1. Ultra-low in-band phase noise
2. Wider PD monotonic input
range than that of SSPLL

Divider-induced phase noise still exists Generates low frequency (e. g. < 10 GHz)
ultra-low-jitter clock with large N and ultra-
low-jitter reference clock
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Fig. 19. SPLL: simplified block diagram of (a) the integer-N SPLL and (b) fractional-N SPLL.
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cluding a brief introduction of the basics of the charge-pump
based PLL (CPPLL),  a summary of the design issues of the ba-
sic  CPPLL  architecture,  a  systematic  introduction  of  the  tech-
niques  for  the  performance  enhancement  of  the  CPPLL,  and
a  brief  overview  of  ultra-low-jitter  AMS-PLL  architectures  (in-
cluding  ILPLL,  SSPLL  and  SPLL),  which  can  achieve  lower  jit-
ter  (<  100  fs)  and  lower  power  consumption  compared  with
the  CPPLL.  Finally,  a  discussion  about  the  consideration  of
the AMS-PLL architecture selection is  also given,  which could
help designers meet their performance requirements.
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